Acircuitic directed star arboricity of planar graphs with large girth
نویسندگان
چکیده
A directed star forest is a forest all of whose components are stars with arcs emanating from the center to the leaves. The acircuitic directed star arboricity of an oriented graph G is the minimum number of edge-disjoint directed star forests whose union covers all edges of G and such that the union of two such forests is acircuitic. We show that graphs with maximum average degree less than 7 3 (resp. 133 41 ) have acircuitic directed star arboricity at most ∆ (resp. ∆+1); this implies that planar graphs of girth at least 14 (resp. 6) have acircuitic directed star arboricity at most ∆ (resp. ∆ + 1).
منابع مشابه
The acircuitic directed star arboricity of subcubic graphs is at most four
A directed star forest is a forest all of whose components are stars with arcs emanating from the center to the leaves. The acircuitic directed star arboricity of an oriented graph G (that is a digraph with no opposite arcs) is the minimum number of edge-disjoint directed star forests whose union covers all edges of G and such that the union of any two such forests is acircuitic. We show that e...
متن کاملOn star and caterpillar arboricity
We give new bounds on the star arboricity and the caterpillar arboricity of planar graphs with given girth. One of them answers an open problem of Gyárfás and West: there exist planar graphs with track number 4. We also provide new NP-complete problems.
متن کاملEquitable vertex arboricity of graphs
An equitable (t, k, d)-tree-coloring of a graph G is a coloring to vertices of G such that the sizes of any two color classes differ by at most one and the subgraph induced by each color class is a forest of maximum degree at most k and diameter at most d. The minimum t such that G has an equitable (t′, k, d)-tree-coloring for every t′ ≥ t is called the strong equitable (k, d)-vertex-arboricity...
متن کاملColoring with no 2-Colored P4's
A proper coloring of the vertices of a graph is called a star coloring if every two color classes induce a star forest. Star colorings are a strengthening of acyclic colorings, i.e., proper colorings in which every two color classes induce a forest. We show that every acyclic k-coloring can be refined to a star coloring with at most (2k2 − k) colors. Similarly, we prove that planar graphs have ...
متن کاملLarge Induced Outerplanar and Acyclic Subgraphs of Planar Graphs
Albertson and Berman [1] conjectured that every planar graph has an induced forest on half of its vertices; the current best result, due to Borodin [3], is an induced forest on two fifths of the vertices. We show that the Albertson-Berman conjecture holds, and is tight, for planar graphs of treewidth 3 (and, in fact, for any graph of treewidth at most 3). We also improve on Borodin’s bound for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005